Classe: TR math expertes

Correction: DS DE MATHEMATIQUES n° 5

Exercice 2:

Considérons l'équation (E): 5x - 26y = 2, où x et y désignent des entiers relatifs.

1. Calculons le PGCD de 5 et 26 à l'aide de l'algorithme d'Euclide :

$$26 = 5 \times 5 + 1$$
; $5 = 5 \times 1 + 0$.

Le dernier reste non nul est 1 donc PGCD(26; 5) = 1; 26 et 5 sont premiers entre eux.

2. On a $1 = 26 - 5 \times 5 = 5 \times (-5) - 26 \times (-1)$ soit $2 = 5 \times (-10) - 26 \times (-2)$.

Ainsi le couple $(x_0; y_0) = (-10; -2)$ est une solution particulière de (E).

3. Soit (x; y) une solution de (E): on a alors 5x - 26y = 2 et $5x_0 - 26y_0 = 2$.

En soustrayant membre à membre ces deux égalités on obtient $5(x-x_0)-26(y-y_0) \Longrightarrow 5(x-x_0)=$ $26(y-y_0)$.

On en déduit que 5 divise $26(y-y_0)$, mais PGCD(26;5)=1 donc d'après le théorème de Gauss 5 divise $(y - y_0).$

Il existe donc $k \in \mathbb{Z}$ tel que $y - y_0 = 5k$, soit $y = y_0 + 5k$.

On en déduit que $5(x-x_0)=26\times 5k$, soit $x=x_0+26k$.

Les solutions sont donc de la forme $(x_0 + 26k; y_0 + 5k)$ avec $k \in \mathbb{Z}$

Vérification:

$$5(x_0 + 26k) - 26(y_0 + 5k) = 5x_0 - 2y_0 + 5 \times 26k - 26 \times 5k = 5x_0 - 2y_0 = 2.$$

L'ensemble des solutions est donc $\mathcal{S} = \{(-10 + 26k; -2 + 5k), k \in \mathbb{Z}\}.$

4. On a obtenu : $1 = 26 - 5 \times 5 = 5 \times (-5) + 26$.

Ainsi 5 est inversible modulo 26 et un de ses inverses est -5.

Exercice 3:

Soit $n \in \mathbb{N}^*$; on pose $a = n^{13} - n$.

1. Comme 13 est premier, d'après le petit théorème de Fermat (PTF) on a :

 $n^{13} \equiv n [13] \Rightarrow n^{13} - n \equiv 0 [13].$

Ainsi a est divisible par 13.

Comme 7 est premier, d'après le PTF on a :

$$n^7 \equiv n [7] \Rightarrow n^7 \times n^6 \equiv n \times n^6 [7] \Rightarrow n^{13} \equiv n^7 [7].$$

 $n^7 \equiv n \, [7] \Rightarrow n^7 \times n^6 \equiv n \times n^6 \, [7] \Rightarrow n^{13} \equiv n^7 \, [7].$ Or $n^7 \equiv n \, [7]$ donc $n^{13} \equiv n \, [7]$, c.à.d que a est divisible par 7.

2. 13 et 7 étant des nombres premiers distincts, ils sont premiers entre eux.

Or 13 et 7 divisent a, donc $13 \times 7 = 91$ divise a.

Exercice 4:

Montrons que pour tout réel x:

$$\sin x + \sin \left(x + \frac{2\pi}{3} \right) + \sin \left(x + \frac{4\pi}{3} \right) = 0.$$

On sait que pour tous réels a et b on a $\sin(a+b) = \sin a \cos b + \sin b \cos a$.

Par conséquent :

•
$$\sin\left(x + \frac{2\pi}{3}\right)$$

 $= \sin x \cos \frac{2\pi}{3} + \sin \frac{2\pi}{3} \cos x$

$$= \sin x \cos \left(\pi - \frac{\pi}{3}\right) + \sin \left(\pi - \frac{\pi}{3}\right) \cos x$$
$$= \sin x \left(-\cos \frac{\pi}{3}\right) + \sin \frac{\pi}{3} \cos x$$
$$= -\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x$$

Par conséquent :

$$\sin x + \sin\left(x + \frac{2\pi}{3}\right) + \sin\left(x + \frac{4\pi}{3}\right)$$

$$= \sin x - \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x$$

$$= 0.$$

Exercice 5:

1. Formules d'Euler : pour tout réel
$$x$$
 on a $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ et $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$.

2. Ainsi
$$\cos^3 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^3$$
.

D'après le binôme de Newton, pour tous complexes a et b on sait que $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$. Ainsi:

Ainsi:
$$\cos^3 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^3 = \frac{e^{i3x} + 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} + e^{-i3x}}{2^3}$$

$$= \frac{e^{i3x} + 3e^{ix} + 3e^{-ix} + e^{-i3x}}{2^3} = \frac{1}{2^2} \left(\frac{e^{i3x} + e^{-i3x}}{2} + 3\frac{e^{ix} + e^{-ix}}{2} \right) = \frac{1}{4} (\cos(3x) + 3\cos x).$$